
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  16 (1 9 8 1 )  1 1 4 2 - 1 1  50 

On some aspects of breakdown of 
13 "-alumina solid electrolyte 
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A theoretical expression is derived for the pressure generated in the sodium-filled cracks 
of/3"-alumina under electrolytic conditions by treating the flux of sodium ions to the 
cracks in terms of the Laplace equation for the appropriate boundary conditions. It is 
demonstrated that the pressure generated decreases with increasing crack length for a 
given current density in contrast to the predictions of some investigators. It is suggested 
that some other factors must be considered if the microfracture model via Poiseuille 
pressure is to be a viable mechanism for electrolyte degradation. 

1. Introduction 
It has been known for some time that the prema- 
ture failure of sodium-sulfur cells can often be 
traced to the failure of the solid electrolyte 
membrane. Several models which attempt to 
describe the failure of the electrolyte have been 
proposed to date [1-4] .  Common to them all is 
the concept of ion focussing and the resultant 
development of Poiseuille pressure which pre- 
sumably helps the crack grow. There are also 
some very fundamental differences in the pro- 
posed mechanisms of degradation. Richman and 
Tennenhouse [2] proposed that crack propagation 
occurs by preferential dissolution of /3-alumina 
at the crack tips. Richman and Tennenhouse 
[2] were able to demonstrate that extremely small 
solubilities can lead to significantly large crack 
propagation rates. Others [3, 4] have argued in 
favour of a pressure driven crack model. In view of 
the limited data available at the present time, 
coupled with several uncertainties associated with 
causes of actual cell failures, convincing arguments 
can be made in favour of either type of model: 
stress-assisted corrosion or a pressure driven crack. 
All of these authors have assumed in their model- 
ling that the crack is tip fed with sodium ions. 
This assumption has been met with some (rightful) 
criticism [5]. One of the objectives of the present 
paper is to relax this restriction and determine the 
flux of sodium ions to the sodium Failed crack by 
soMng the Laplace equation for appropriate boun- 
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dary conditions. Recently, Brennan [6] examined 
the problem of the crack being fed from the sides. 
His method relies on defining an equivalent circuit 
for the electrolyte, the interface and the sodium 
in the crack. By choosing suitable values for the 
resistances, Brennan [6] showed that the current 
could be partitioned between the crack and the 
electrolyte thereby leading to a situation in which 
the crack is fed from the sides as well as at the tip. 
The approach in this study is to assume that the 
charge transfer resistance as well as the resistance 
of sodium is negligible. However, the solution here 
will be more exact. Further, it is to be noted that 
the equivalent circuit given by Brennan does not 
truly represent a crack for the following reason. 
If one lets the charge transfer resistance and the 
resistance of sodium in the crack tend simul- 
taneously to zero, the equivalent circuit given 
by Brennan [6] reduces to a tip fed crack (as 
assumed by previous investigators) and not to the 
Laplace solution for the crack problem at hand. 

The second objective of this paper is to re- 
emphasize that any realistic model based on 
PoiseuiUe pressure must determine crack thick- 
ness for the appropriate conditions and that one 
cannot assume a value of the crack thickness as 
has been done by some investigators [1, 2, 6]. In 
view of the strong dependency of critical current 
density (above which degradation can occur) on 
crack thickness, an assumed value of crack thick- 
ness can always give an apparent agreement with 
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experimental results and give a false confidence 
in the hypotheses on which a given model is based. 
In fact, one must determine ier (critical current 
density) and then examine whether the Poiseuille 
models are realistic in the present situation. The 
fallacy in assuming a crack opening displacement 
can be stated simply by the following. If one were 
to consider a certain elastic spring of stiffness K 
and if it were subjected to a force F then the 
deflection of the spring cannot be arbitrarily 
assumed but is given by F/K. Since the solid 
electrolyte (/3"-alumina) is elastic, the crack thick- 
ness cannot be assumed but must be determined 
based on the pressure, crack length and elastic 
properties of /3"-alumina. Assumption of crack 
thickness is therefore quite incorrect and can lead 
to certain misleading conclusions. 

Finally, based on the calculations presented 
here, certain plausible complementary mechanisms 
for degradation are considered and the role of 
electrolyte properties in promoting higher cell life 
is examined. 

2. Theoretical analysis 
The objective here is to determine the Poiseullle 
pressure developed inside a crack due to the 
sodium which is deposited in the crack and which 
flows towards the open end. As mentioned before, 
in earlier work, the sodium ions were assumed to 
be attracted to the tip of the crack and that the 
crack was therefore not fed from its sides. A more 
realistic treatment of such a problem must include 
the solution of the Laplace equation. The analysis 

presented below assumes that the resistivity of the 
liquid sodium can be taken to be zero and that the 
charge transfer resistance (caused for example due 
to polarization effects) is also zero. In view of the 
low resistivity of liquid sodium compared to that 
of/3"-alumina, the first assumption is easily justified. 
The second assumption can be justified if polariz- 
ation effects are minimal. If polarization effects 
cannot be neglected, then somehow these must be 
incorporated. Solution to the Laplace equation in 
such a case is expected to be very complicated. 
One may choose an analogue simulation technique 
and write an equivalent circuit. However, one must 
be careful to ensure that the chosen equivalent 
circuit truly represents the problem at hand. 

2.1. S ta temenl  of  the p rob lem 
Consider a large plate of some material of resistivity 
p containing a thin crack of length 21 as shown in 
Fig. 1. The crack is filled with some other material 
whose resistivity xs zero. (In practice the resistivity 
of the material in the crack need not be zero. The 
field solutions rapidly approach the one for 

Pcraek/Pplate = 0 as long as  Pcrack/Pplate ~ 0 . 0 5 ) .  

A steady state current of density i (amps cm -2) 
(far away from the crack) passes through the plate 
as shown in Fig. 1. Since the resistivity in the 
crack is zero and the current is finite, the potential 
in the crack is constant, i.e. 

~b(x, 0) = constant; Ixl ~< l. (1) 

This constant may be chosen to be zero. Further, 
due to the symmetry about the x-axis, we have 
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Figure 1 A large plate o f  some 
material  o f  resistivity p con- 
taining a crack o f  length 2l 
which is filled with a material  
of  O = 0. i is the un i form steady 
state current  density.  
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[cI~[3__~j(x, 0) = O; Ixl > l .  (2) 

Also, as x ~ + ~, the current density is given by 

i(x ~ , y )  = - - a  = i (3) 

where a is the conductivity (l/p).  
It is well known [7] that mixed boundary value 

problems of this type can be solved by the appro- 
priate choice of an analytic function f ( z )  such that 

; ( z )  = ep + l ~  (4) 

where ] = (-- 1) 1/2 and ~ and ~b are plane harmonic 
functions. It is easily vertified that the potential 
q)(x, y)  can be given by [8] 

/ \ 

k l 

where 
rl = [ (x - - l )  2 + y 2 ] l n  

= [(x+t) 2 +y2lln 

01 = tan-1 ( x @ / )  

and 

tan,(  1 
r l ,  r2, 01 and 02 are shown schematically in Fig. 2. 

For Ixl ~< l a m y  = 0, note that 

01 +02 = + m  
Thus 

q,(x, 0) = 0; Ixl ~< l. (6) 

It is also easily vertified that 

Oq5 
= - ( x , 0 )  = 0; I x l > l  (7) 
oy 

and that 

Lim - -  = --  ip.  (8) 

The amount of current entering the crack (from 
one face) per unit area between x and x - d x  is 
simply i ( x ,  0), the local current density, given by 

i ( x , O )  = - - ~  (x,0);  t x l < t .  

/x 
- (l 2 _ x 2 ) l / i  . (9) 

The flux lines and the equipotential lines are shown 
schematically in Fig. 3. Note that the y-axis 
(x = 0) is an equipotential line with ~(0 ,y )  = 0. 
Let us then consider the half-plane problem of an 
edge crack of length l filled with sodium such that 
the wide end opens up into a reservoir of sodium 
as shown in Fig. 4. The amount of current per unit 
thickness (in the z-direction) entering between x 
and x - d x  is 

2/xdx 
d/(x, l) - (l 2 _x2)V2 . (10) 

Thus, the amount of current that enters between 
x and l is given by 

f: xax 
I ( x ,  l )  = 2i (l 2 _ x 2 ) U 2  

p~12 
= 2 i l  Jsin_ 1 (x//)sin oeda 

I ( x ,  l )  = 2 iq  2 - - x 2 )  in .  (11) 

The pressure drop dp when fluid flows between x 
and x - d x  is 

( - [ , 0 )  

Y 

T (x,y) 

(o,o) (/,o) 
X 

Figure 2 A schematic diagram 
defining rl, r2, 01 and 0 2 . 
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Figure 3 Flux lines and equipotential lines for the problem shown in Fig. 1. 

3 rTVm I (x ,  I) dx (12) z2~p(x) 
dp - 2 r3F 

in which the Hagen-Poiseuille law has been used 
for a rectangular channel of  thickness 2r and width p(x )  - - -  

unity. Also, r7 is the viscosity of  sodium, Vm is the 
molar volume of  sodium and F is the Faraday and 
constant. Thus p( l )  - 

= p(x) - 3,7 Vm i f :  P F  (l 2 - x2)  u2 dx 

2raF sin -1 1 
I I --12-]1 

(13) 
3rr~Vmil 2 

Fr  3 (14) 

/ SOD/UMA. 

Figure 4 A schematic diagram 
showing flux lines to a sodium- 
filled edge crack in f-alumina 
during charging. 
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Figure 5 A plot of  normalized pressure pn 
against x/l. 
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For a parallel rectangular channel r is independent 
of x and therefore is out of  the integral in the 
above. But as will be shown later, it is a function 
of / .  

Equation 13 is schematically plotted in Fig. 5. 
As m a y  easily be seen, the loading created on 
the crack surfaces is nearly linear (triangular). 
Equation 14 shows that if the crack has a thick- 
ness of  2r and if the material is truly rigid (meaning 
the elastic modulus is mathematically infinite), 
then p( l )  is linearly proportional to i, inversely 
proportional to r a and linearly proportional to l 2 . 
Thus, it deceptively appears as though p( l )  should 
increase with increasing l for a given current 
density. Some investigators [2, 6] have therefore 
shown p(l )  increasing with increasing 1. This 
however would be true if and only if the elastic 
modulus is infinite or if the crack opening dis- 
placement for zero load is non-zero (and in fact 
much larger than elastic displacements) such as 
that created by crack tip blunting due to plastic 
deformation. Since the elastic modulus is finite, it 
can in fact be shown that p ( l ) d e c r e a s e s  with 
increasing/. This is demonstrated in the following. 

For a plate containing a crack length 2l sub- 
jected to a uniform pressure p,  it can be shown 
that [9] the crack opens up into an ellipse with 
plate is 7rbl which is given by  

2b - 47r(1 - -  V2) pl.  (15) 
E 
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The volume of  the crack per unit thickness of  the 
plate is rrbl which is given by  

rrbl - 2rr(1 -- v 2) 
E PI2 (16) 

where v is Poisson's ratio and E is Young's elastic 
modulus. For an equivalent crack of flat parallel 
faces that are a distance 2r apart, volume per unit 
thickness is 4rl. Equating the two volumes 

4rl - 2rr(1 --  v2) Pl 2 
E 

or  
rr (1 --  v 2) 

r -  2 E pl  (17) 

are obtained. 
Sodium deposited in the crack flows towards 

the open end and the loading created on the crack 
surfaces is nearly triangular. For an edge crack 
with linearly increasing loading (triangular loading) 
along the crack length, it can be shown that [10] 

r = 0 .8982  (1 - -  v%~._._'lo(l~l (18)  
E 

where p(1) is the value of pressure at x = I. 
At 300~ ~7=3.4x 10-3poise, E = 2 . 0 7 x  1012 

dynes cm -2, v = 0.25 and Vm = 23.7 cm 3 tool -1 . 
Equation 18 shows that the crack opening dis- 

placement (elastic) 2r is a function of p( l ) ,  l and 
the elastic constants. Some investigators [2, 6] 
have assumed r to be an arbitrary adjustable 



parameter, which is incorrect. Substitution of r 
from Equation 18 into Equation 14 gives 

,f,,4 [ 3~Vm e3 \ 
P , , I  ~ - t 4F(O .8982)3 ( l_vZ )3} ( l ) .  (19) 

On substitution for E, Vm, F and 7? (at 300 ~ C) 

7.3527 X 107) 
p(l) = l 1/4 i 1/4 dynes cm -2 (20) 

is obtained where once again the pressure distri- 
bution on the crack surfaces is triangular and 
Equation 20 gives pressure at x = l. Equation 20 
shows that the pressure created within the crack is 
inversely proportional to l a/4 for a given current 
density. This result indicates that for a given 
current density, if the crack length is increased, 
two opposing factors influence the pressure. The 
increase in crack length should increase the press- 
ure while increased crack opening displacement 
should decrease the pressure. It so happens that 
the latter effect more than offsets the former effect. 
Within the realms of the theory of elasticity the 
pressure must decrease with increasing crack length 
and not increase as given by some investigators 
[2,6].  

In the above it has been assumed that the crack 
is a flat parallel slot of thickness 2r. Crack shape 
determined previously [4] shows that the crack 
faces are nearly parallel under triangular loading. 
It is important to emphasize however, that r has 
not been assumed to be a constant but it is shown 
to be a function of p(l) and I. Assumption of 
constant r (independent of p and l) as made by 
some investigators [2, 6] cannot be true since it 
violates the theory of elasticity (except when E 
is mathematically infinite which implies zero strain 
for any loading; clearly, this is of no physical 
significance). Assumption of constant r can only 
be valid if the crack does not tend to zero thick- 
ness for zero pressure and if the corresponding r 
(for zero pressure) is much larger than the change 
in crack face displacement (elastic) that would 
occur when crack faces are subjected to loading. 
For a crack of length 100/~m under a pressure of 
150MNm -2, the change in crack face displace- 
ment is "~ 1000 A. The crack opening displacement 
under zero pressure would have to be much greater 
than 1000 A such as would occur due to crack tip 
blunting. Thus, the assumption of fixed r may be 
justified if say r for zero pressure is at least 10 000 
to 15 000 A. If the cracks are so wide however, the 
pressure generated within the cracks at any reason- 

able current density is negligible and the crack 
would not advance by a microfracture model. 
Assumption of constant r as made by Richman 
and Tennenhouse [2] and Brennan [6] is incorrect 
as well as the further assumption of r of the order 
of 10 to 50A made in [2, 6] in order to obtain 
critical current densities of the order of 1 to 
2 amps cm -2. The objective of any model based 
on Poiseuille pressure must be to accurately cal- 
culate the critical current density so that basic 
premises of elasticity are not violated. A calcu- 
lation of critical current density may now be made 
in light of Equation 20 and the failure criterion; 
namely the Griffith equation. 

We know via the Griffith equation that the 
critical pressure required to extend the crack is 
inversely proportional to the square root of the 
crack length. For triangular loading [ 10] 

Per = 0.3662(1 --v2)l (21) 

where Per is the value of the pressure at x = l 
required to extend the crack. With 7elf = 10 Jm -2 

2.4555 x 108 
Per - I 1/2 dynes cm -2. (22) 

For a given crack length and current density, 
the pressure generated (triangular) is given by 
Equation 20. The crack would begin to extend 
when the current density was raised to a value such 
that p = Per. Thus, equating Equations 20 and 22 
gives an expression for critical current density, ier, 
given by 

1.2439 x 102 
ier - (23) 

l 

Plots of p and Per are shown in Fig. 6. The cross- 
hatched region is the supercrltical region where 
the crack growth would occur by the PoiseuiUe 
pressure model. Equation 20 shows that small 
changes in either the current density or the crack 
length has a marginal effect on the pressure 
developed inside the crack. 

3. Discussion 
Based on Equation 23 it is tempting to evaluate 
the critical value of current density above which 
degradation would occur. For a crack length of 
lO0/~m, the calculated i e r  "~ 12400ampscm -2 is 
clearly an outrageous number. It is important to 
emphasize that such a high value of ier is not the 
result of any miscalculations; rather it is the true 
value under the assumptions made in the model. 
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Figure 6 Plots of p against I for i = 1 amos cm -2 and i = 100 amos cm -~ and Per against l for three values of fracture 
energy. 3"ell = 5 J I n  -~ to 3' = 10 J m -2 lines are drawn based on polycrystalline fracture energy while the 3"e~ -- 1 J rn-: 
line is drawn based on single crystal fracture energy. The cross-hatched region is the supercritical region. 

This glaring discrepancy between the theoretical 
and experimentally observed ier in fact suggests 
that there are some other factors of significant 
importance which have been overlooked if indeed 
the Poiseuille pressure model is to be a realistic 
model describing the degradation process ade- 
quately. Assumption of arbitrary values of 2r as 
made by some previous investigators [2, 6] simply 
forces the experiment and theory into apparent 
agreement and does not explore the applicability 
of the model to the degradation phenomenon. 

There are several factors which could con- 
ceivably increase the pressure exerted on the 
crack faces for a given current density. Since 
p cc i 1/4, small changes in p can make significant 
changes in icr. Since the critical value of p for 
failure to occur is determined by the fracture 
properties, the factors which could increase p for 
a given l and i, would drastically lower i e r .  Increase 
in p beyond that given by Equation 20 would 
mean that p wilt reach Per at a lower current 

density. Some of these factors are given in the 
following. 

(1) The crack surfaces are expected to be 
rough. Therefore, there will be some head losses 
as the sodium flows down the crack towards the 
open end. As the amount of sodium that flows 
in the crack is determined by the current density 
and the crack length, the rougher the crack 
surfaces, the more the pressure will develop. 

(2) It is not clear whether the viscosity in very 
thin cracks (of the order of 1000 A) would be the 
same as the viscosity of bulk sodium. Viscosity 
in thin channels could be greater. In the case of 
water, it is known that the surface viscosity can 
be two to three orders of magnitude greater [11]. 
If the viscosity in thin channels is greater than 
the viscosity of bulk sodium, then the pressure 
generated for a given current density and crack 
length would be greater. 

These two factors could raise p beyond that 
given by Equation 20 and thereby lower ier- 
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Previously described current concentration effects 
can significantly increase current densities at the 
peripheries on non-wetted areas [12] or at the 
peripheries of areas across which a large charge 
transfer resistance exists. Further, local crack 
propagation may be controlled by the single 
crystal fracture energy which is about an order 
of magnitude lower than the polycrystalline 
fracture energy leading to two orders of magni- 
tude decrease in ier. Also, there does exist the 
possibility of a stress-corrosion type of model 
which may promote crack growth across grain 
boundaries as originally proposed by Richman 
and Tennenhouse [2]. The renewed interest in 
the stress-corrosion model despite negative results 
regarding stress-corrosion in our earlier exper- 
iments [4] is due to the fact that under appropriate 
conditions liquid sodium completely wets /3"- 
alumina [ 13 ] thereby exhibiting chemical affinity. 

Finally, there also exists the possibility that 
internal pores could provide recombination sites 
where sodium metal could deposit. If cracks are 
associated with such pores, these could initially 
propagate* within the electrolyte before opening 
up on the surface. The rate of crack propagation 
may then be controlled by the electronic con- 
ductivity of y-alumina. If this is the case then 
improvement of density may result in improved 
performance. Impurities which increase electronic 
conductivity could be detrimental. It is possible 
that one or all of the above models could explain 
the degradation of /3"-alumina, since, central to 
all the models is the concept of sodium under 
pressure in cracks. 

One interesting consequence of the Poiseuille 
pressure model is that the amount of sodium flow- 
ing out of the open end of the crack, at the 
condition of criticality, is independent of crack 
length. This is shown in the following. From 
Equation 14 it is known that 

3 rrr? Vm il 2 
p = -  4Fra (14) 

where r is not a constant but is given by 

~ r ( 1  - v 2) 
r - pI .  (17) 

2E 

The volume flow rate of sodium exiting from the 
open end is given by 

Pout = 2rp(2r)2 (24) 
12r~l 

for unit width of the crack. At the condition of 
criticality, the above reduces to 

P o u t - - 7 r 3 [  "(1 - p2)')'eff ] (25) 
3 nE 

which is independent of crack length. The amount 
of sodium that enters the crack per unit time on 
the other hand is linearly proportional to the crack 
length. Thus, the model would predict that the 
crack would accelerate [4] since the difference 
(Vin-  Pout) is taken up by the increased crack 
volume. Experimental observation has, however, 
shown that the rate of crack propagation (dendrite 
penetration) is nearly constant at constant current 
density. This implies that Vin = l 1/2 (because the 
critical volume of the crack is proportional to 
13/2; thus the rate of change of crack volume is 
proportional to 11/2). However, if steady state ion 
focussing is established then ~n cc l. This implies 
that during the crack propagation stage, the steady 
state ion focussing is not maintained and one must 
consider the transient problem of diffusion of 
sodium ions towards the crack. 

4. Conclusions 
(1) The flow of sodium ions to a sodium-filled 
crack has been determined via a solution to the 
Laplace equation. 

(2) For a given current density, the pressure 
drop (from the tip to the open end) decreases with 
increasing crack length. 

(3) Very high values of ier calculated suggest 
that there are other factors which tend to increase 
p for a given current density. Several experimental 
results tend to support the Poiseuille model, how- 
ever, Perhaps, a detailed calculation of pressure 
drop in thin channels would be required for 
reasonable calculation of ier. A calculated value of 
ier in the neighbourhood of 100 amps cm -2 would 
be reasonable in the light of the current concen- 
tration near non-wetted areas discussed previously. 
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*Provided an electronic short exists between the pore and the sodium reservoir. 
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